butions from the attractive hydrogen-halogen coupling (hydrogen bonding effects) which would be important due to the large ionic polarizability of the halide ions. Attractive forces also may arise from the van der Waals interaction between the NH₄ and the halide ion, from dynamic polarization effects introduced during vibration, and as a result of the dipole induced on the halide ion by the hydrogens when the NH₄ ions are antiparallel. The last attractive potential is believed to be quite important in "disordered" NH₄Cl V and NH₄Br II. 35

The potential for the librational motion of the NH_4^+ ion is usually developed in terms of the spherical harmonics. ¹⁷ In the disordered phase, the leading nonspherical term is the fourth-order term; and an approximate solution which relates the barrier height (V_0) to the first-order librational frequency is given by: ⁵⁷

$$hv_6 = (8t^2 v_0/I) - (5t^2/2I)$$
 (2)

Here, I is the moment of inertia, and v_6 is the librational frequency. In this approximation, the barrier height should vary inversely as the fifth power of the lattice constant, a_0 . A potential for octapole-octapole interaction which varies inversely as the seventh power of lattice constant is usually added to the above expression for the potential when all the NH_4^+ ions are parallel to each other in the ordered phase. When the barrier height (V_0) for "disordered" NH_4 Cl V is evaluated from the one-phonon librational frequency (Fig. 4) on the assumption of a cubic potential (Eq. 2) and a constant moment of inertia, V_0 is observed to be proportional to $a_0^{-6.7}$ rather than the expected a_0^{-5} . The barrier height for ordered NH_4 Cl IV shows a weaker dependence on the lattice constant with V_0 now proportional to $a_0^{-2.5}$. Although the calculations for phase IV is based on librational frequency obtained from two-phonon excitation, it is felt that this is not the cause for the weak dependence on lattice constant in the ordered phase. The pressure dependence